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Abstract 

The  nature of global, large-scale  sea  level variability is studied using a numerical ocean 
circulation model.  Salient  physics underlying sea level  change  is  identified and used to 
analyze TOPEX/POSEIDON measurements by data assimilation. The  study demon- 
strates how and what can be resolved and improved by assimilation. Proper evaluation 
of errors,  particularly model representation error is critical in  reconciling observations 
and model estimate. 

1. Introduction 

Sea  level fluctuates in time reflecting not only  processes of the sea surface but also the 
state of the ocean at depths, making satellite altimetry  a powerful tool for studying 
global ocean dynamics and thermodynamics. Yet, direct inferences of subsurface flow 
and density from sea level  is  not straightforward. This  study ’examines the physical 
nature of large-scale sea level variabilities and  the underlying circulation by a combined 
analysis of sea level data from TOPEX/POSEIDON and a numerical ocean circulation 
model. 

Estimating ocean circulation from sea level data is in essence an inverse prob- 
lem, whose forward solution is  provided by numerical models of the ocean. Realistic 
numerical simulations of the ocean are now commonplace, and  are useful  in dynam- 
ically interpreting observations, and  in making  inferences of the underlying physical 
processes.  More  recently,  such  models are employed in synthesizing data, i.e., data 
assimilation, which  allows direct estimation of the entire ocean circulation from partial 
measurements of the oceanic state. 

The problem of what changes in large-scale circulation are reflected in sea level 
is first examined in Section 2, by analyzing results of an ocean general circulation 
model. Sea level variability from a wind- and thermally-driven numerical simulation 
of the global ocean is decomposed into its dependence on forcing and  the  nature of 
the ocean’s response. These results are  then employed in Section 3 to assimilate 
TOPEX/POSEIDON  data  into  the model, so as to identify and extract changes in 
large-scale ocean circulation measured by the  altimetric satellite. One of the foci of 
this  study is to explore and  demonstrate how and what can be inferred of ocean circu- 
lation  from assimilating actual satellite altimetric measurements. 



. .  

2. Nature of Sea Level  in Relation to Atmospheric Forcing 

The correspondence between sea level  changes and ocean circulation is examined by 
analyzing a numerical simulation of the global ocean. Here, the sea level signal of 
interest is those apart from tides and effects of atmospheric pressure loading, and also 
exclude signals associated with mesoscale variabilities, which, in  fact, are  the  three 
largest signals measured by an altimeter. Instead,  the focus of the  study is on the 
remaining large-scale  changes and their corresponding circulation. 

The model  employed  is  based  on the Modular Ocean  Model of NOAA's GFDL. 
The model domain is global, from 80"s to 80"N, with a coarse 2"  by 1" horizontal grid 
with 12 vertical layers ranging in  thickness  from 50 m near the surface to 1000 m at 
depth.  The model  is run from January 1992 till December  1993  forced by daily winds 
from the NCEP atmospheric analyses and COADS climatological monthly heat flux 
estimates, following an eight-year spin-up using stationary forcings. 

Plate 1 summarizes the  nature of the model's sea level  changes  as a function of 
space and  its physics. The overall root-mean-square (rms)  amplitude (Plate la)  varies 
spatially with some areas exceeding 8 cm.  On  average, the  total sea level variability 
is on the order of 5 cm rms. Effects of heating and cooling can be isolated (Plate 
lb)  by running the model with winds  held stationary  as  during the spin-up phase but 
using monthly heat flux  forcing as in the control run  (Plate  la). Comparisons between 
Plates la  and lb,  demonstrate seasonal heating and cooling  effects dominating sea 
level variability in mid-latitudes. A closer examination shows such thermal forcing  only 
locally af€ecting temperature of the model's upper most  levels. kffects of heating and 
cooling  is small in the tropics because of little seasonal change in  heat flux. Thermal 
effects at higher latitudes  are negligible due to small thermal expansion coefficients 
reflecting lower sea surface temperatures. 

Differences  between Plates la and lb  are due to wind forcing, which can be decom- 
posed into  contributions from baroclinic (Plate IC) and  barotropic (Plate  Id) changes 
in circulation. Effects of winds are isolated by running the model with daily wind  forc- 
ing but with stationary  thermal forcing. The decomposition is  achieved by computing 
the two parts separately [e.g, Pitaardi e t  al., 19951. Comparisons among different panels 
in  Plate 1 demonstrate that such  decompositions are nearly linear,  in  spite of model 
nonlinearities. 

Baroclinic changes dominate low latitudes, whereas barotropic changes dominate 
variabilities at high latitudes.  The baroclinic response is largest in the tropics owing 
to  spectral characteristics of baroclinic planetary waves. Namely, the ocean's response 
to winds depends in part on properties of oceanic waves that carry energy  away from 
forcing regions. The maximum resolvable  frequency  is largest at  the equator, and  as 
a result  has the largest spectral window (and wind energy) available for baroclinic re- 
sponse. Although wind  changes are larger at higher latitudes,  they occur at frequencies 
outside  the domain of baroclinic waves. The baroclinic response can further  be decom- 
posed into  separate dynamic modes,  where the first mode contribution is found to  be 
largest  in most locations. 

Barotropic waves,  on the other  hand, have significantly higher frequencies than 
baroclinic waves,  covering  most of the frequency range of the winds. As a result, the 



barotropic response does  not  depend as much on the winds' frequency dependence as 
do baroclinic waves, and is largest at high latitudes where  wind variability is largest. 

The dominance of barotropic response explains the high frequency nature of sea 
level  observed at high latitudes (e.g., Figure la), whereas sea level records in the trop- 
ics are characterized by low frequencies (periods longer than 100-days). In fact, many 
high latitude regions of the model  have  half their intra-seasonal sea level variabilities 
at periods shorter than twenty days. On the  other  hand, the largest barotropic re- 
sponse, found in the Bellingshausen abyssal plain, has a dominating period of about 
30-days (Figure lb). The large barotropic response in  the Bellingshausen basin appar- 
ently reflects  presence of a barotropic resonance  locally  forced  by winds, due to closed 
potential vorticity contours surrounding the  area [e.g., Willebrund e t  ul., 19801. Figure 
1b  demonstrates that a similar  oscillation  is  observed  in TOPEX/POSEIDON  data, 
albeit with a smaller amplitude. 

3. Assimilation of TOPEX/POSEIDON Data 

Section 2 analyzed the forward relationship between  ocean circulation and sea level. 
This section examines the inverse;  Namely,  ocean circulation underlying measured sea 
level changes of TOPEX/POSEIDON is estimated by assimilating the  altimetric  data 
into  the  same model  used  in  Section 2. 

Three years of TOPEX/POSEIDON data from January 1993 until December  1995 
was assimilated into the model to extract  and  extrapolate large-scalk sea level signals 
in  the measurements and to explore how the model circulation can  be improved. All 
standard environmental corrections are applied to the  data. Time-continuous, along- 
track sea level  anomalies are directly used in  the analysis as opposed to space-time 
maps of the  data, so as to avoid  possible aliasing of high frequency barotropic signals 
at high latitudes (cf.  Section 2). 

The assimilation is  performed  using an approximate Kalmaa filter and smoother, 
which  involves approximating the state's  error covariance matrix by a reduction of its 
effective dimension and using its time-asymptotic limit [.Fukumori et  al., 1993, 19951. 

For instance,  the analysis in the previous section showed that  there  are  three dom- 
inant modes underlying large-scale  sea  level  changes. They are wind-driven barotropic 
and first baroclinic modes, and seasonal heating and cooling  effects of the  upper most 
layers.  However,  since heating and cooling  effects are local and have relatively small 
dynamic effects on the present time-scales of interest, the physics of large-scale sea level 
changes may effectively be approximated in terms of just barotropic and first baroclinic 
modes as opposed to  the model's 12 vertical degrees of freedom. The horizontal reduc- 
tion is achieved  by mapping the two  dynamic mode amplitudes onto a coarser grid than 
that of the forward model, thereby isolating and defining the large-scale. The coarse 
grid is defined on a 10" by 5"  zonal and meridional grid, respectively, and  the  trans- 
formation  onto the model grid is  achieved  by objective interpolation [e.g., Bretherton 
et al., 19761. 



3.1 Error Identification and Calibration 

Data assimilation can be defined mathematically as an inverse problem. A least-squares 
estimate (x) is  sought that minimizes the weighted sum of differences ( J )  with data 
(y) and prior model estimate (xo). 

The summation is taken over all  available data and time, and weights R and P are  error 
covariance matrices of data  and model, respectively  [e.g., Wunsch, 19971. While the 
solution of Eq (1) is mathematically straightforward (e.g., Kalman filter), specification 
of R and P requires care; A mis-specification of these weights amounts to solving a 
different problem. 

Cohn [1997] has a clearer than usual description of the exact nature of these errors. 
In particular,  data error not only corresponds to errors of the measuring instrument, 
but also what is  called  model represetation error. Namely, observations can be  written 
as a function (E) of the  true oceanic state, w, plus instrument  error, e; 

y = E ( w ) + e  (2) 

Instrument errors represent quantities unrelated to either model or ocean. For satel- 
lite  altimetry, e includes,  for example, errors in the satellite's orbit and ionospheric 
corrections. Function E represents the measurements' sampling'operation. 

In  terms of quantities in model space, Eq (2) can be rewritten  as; 

where H is the model  equivalent of E, i is the  true model state,  and operator I I  projects 
the infinite dimensional  oceanic state  to  the model space (;.e., Dw G 2) .  Assimilation 
is the inversion of (3) that relates model state  to observations rather  than a solution 
of (2). The second term in (3) describes  differences  between the ocean and  the finite 
dimension of the model, and, as far as the model  is concerned, is indistinguishable 
from errors of the measuring instrument.  The second term  in (3) is the representation 
error,  and corresponds to physics  missing  from the model but represented in  the ob- 
servation. Representation errors are inconsistent with model physics and  are typically 
quantities whose  scales are smaller than model grid spacing. In effect, representation 
errors downweight the data constraint (first term  in  Eq 1) and prevent models from 
being forced too close to observations that  it cannot represent,  thus  guarding against 
model 'indigestion'. 

Fu e t  al., [1993] introduced an objective means of estimating data  and model er- 
rors based on a comparison  between observations and model simulation. Plate 2 shows 
diagonal elements of R and P (projected to sea level) based on such estimate. Data 
error is larger than model error  estimate,  and  in fact much larger than  the measure- 
ment accuracy of TOPEX/POSEIDON ( M  2 cm rms).  This is due to representation 
error dominating data error,  in  particular, sea level associated with meso-scale eddies. 



Namely, the largest variability in the corrected altimeter data is due to meso-scale ed- 
dies, which are spatially smaller than what the present model  can  resolve. In fact,  the 
spatial dependence of data error variance  closely  resembles distribution of meso-scale 
variability. 

Model  process  noise (incremental error of the model) was modeled in the form 
of wind error,  and calibrated such that  the resulting simulation error  estimate based 
on the Kalman filter algorithm (Plate 2c)  is comparable with estimates obtained from 
the data-simulation comparison (Plate 2b). Such objective means of identifying and 
calibrating data  and model errors assures consistency and accuracy of the assimilation 
as described below. 

3.2 Validation of Estimate 

As in most inverse problems, altimetric assimilation is rank deficient and  has an infinite 
number of solutions that can reduce  model-data  misfits. That particular  results are 
reasonable and  accurate can be assessed by examining self-consistencies of the calcula- 
tion and by comparisons with independent observations. 

Consistency of the calculation is evaluated by comparing assimilated results against 
error  estimates that were assumed. For instance, Plate 3a shows improvements in the 
filtered estimate’s sea level  from that of the simulation in terms of reduction of model- 
data misfit, y - y(x). Positive values indicate assimilation’s improvement, which  is the 
case almost everywhere. Plate 3b  is an independent estimate of the same quantity based 
on formal  error  estimates used in the assimilation. The  qualitative  and  quantitative 
similarities between Plates 3a and 3b demonstrate the statistical consistency of the 
present assimilation. 

Theoretically, model errors are nonincreasing functions of the amount of data  that 
is assimilated. Therefore, if assimilation is done correctly, the assimilated estimates 
should be more accurate than  that of the simulation, regardless of property. Figure 
2  demonstrates examples of comparing model estimates (assimilation and simulation) 
with independent in  situ measurements; The examples are subsurface temperature, 
current,  and  bottom pressure measurements. In each case, the altimetric assimilation 
is in  better agreement with in  situ measurements, consistent with formal errors that  are 
also shown in the figures. Remaining discrepancies are  partly  due  to  limitations  in  the 
information content of the  data. For instance, although resolving  lower frequencies, the 
altimetric assimilation was not able to correct  high  frequency errors of bottom pressure 
(periods  shorter than 10-days in Fig 2c)  in spite of the model’s  coherence with the  data. 
This is likely  in part due to TOPEX/POSEIDON’s repeat cycle  being 10-days, which 
is not sufficient to correct such  high  frequency variations. 

Most comparisons demonstrate similar improvements where altimetric assimilation 
is in better agreement with independent in  situ measurements than model simulation 
is. On the other  hand, a few comparisons result in larger discrepancies after the assimi- 
lation. However, such situations  are found to be due to representation error  dominating 
the measurements rather  than a failure of the assimilation per se. Figures 3a and 3b 
compare model estimates with subsurface temperature at  the same location but  at 



different depths,  and is an example  having larger model-data differences after assimi- 
lation. In this example, the dominant variability in the  data is incoherent with depth 
and is something the model  is qualitatively lacking, indicative of model representation 
error. 

3.3 Circulation  Estimates 

Model corrections by the assimilation are mostly baroclinic in nature in the tropics but 
barotropic at higher latitudes, similar to properties of model sea level  itself (Section 2). 
Plate 4 shows an example of  how model circulation is  modified by the assimilation at 
1200m depth for a particular day  in October 1993. A substantial velocity correction is 
found in the Bellingshausen abyssal plain without associated temperature corrections, 
indicative of barotropic change.  Such  modification  reflects the assimilation successfully 
reducing the excessive amplitude of the model's barotropic resonance as was evident in 
Fig 1. The excess  resonance is apparently due to  the model's coarse vertical resolution 
that results in too large a horizontal gradient of potential vorticity and thereby the 
magnitude of the resonance. 

Substantial  temperature  and circulation changes are also found in  other regions of 
Plate 4, especially the Indian Ocean. A property of particular  interest is the meridional 
heat flux. Figure 4 shows  zonally and vertically integrated time-averaged meridional 
heat flux  for the  Indian, Pacific, and Atlantic Oceans as a function of latitude. Because 
of the filter's linear nature  and  that  the assimilated data  are anomalies with respect to 
the three-year mean, the model's time-mean circulation is not directly constrained and 
the mean of the assimilated estimate is hardly different from that of the simulation. The 
discontinuity in the Pacific about 2"s (and in the Indian Ocean between 6"s and 10"s) 
is due  to  the Indonesian Throughflow  which carries approximately 0.6 PW of heat from 
the Pacific into  the Indian Ocean. The mean flux estimates are somewhat smaller than 
other  estimates because of the coarse nature of the model, which  necessarily smooths 
over and therefore misses the narrow boundary  currents where the  temperature  and 
velocity correlations are high. 

Temporal variability of meridional heat flux  is largest in  the tropics, where seasonal 
changes are larger than even the mean (Fig 4). Such variations are largely due  to 
fluctuations in surface layers  where mean temperature  and velocity fluctuations are 
largest. Northward meridional heat flux  is maximum during boreal winter months and 
minimal  in summer in all three basins. The largest seasonal cycle occurs in  the Indian 
Ocean associated with the monsoon,  where the North  Equatorial  Current (- 5"N) 
disappears  during  the summer replaced with southward flow throughout the interior 
of the tropical  Indian Ocean  feeding the South Equatorial  Current (10 - 20"s).  The 
Indonesian Throughflow  is also maximum during boreal summer  further enhancing the 
southwestward transport of the South Equatorial  Current. 

Modifications  in heat flux estimates due to assimilation is much smaller than  the 
model's temporal variability, but is largest in the tropics as in  the model fluxes them- 
selves.  Much of the modifications occur at high frequencies, but nontrivial changes 
are also found at lower  frequencies  especially the  annual  and semi-annual periods. Ex- 
amples of such  differences are shown in Figure 5 where the changes are largest. For 



instance,  the simulation's annual component  is attenuated  at 6"s in the Indian ocean. 
In comparison, the assimilation has greatly strengthened the variability along 4"s in  the 
Atlantic Ocean,  where the model simulation significantly underestimated the temporal 
change. The example  along 2"N in  the Pacific, on the other  hand, shows the phase 
of the annual cycle  being altered (advanced) by the altimetric assimilation while the 
amplitude is hardly different. The changes by assimilation are almost  180" out of phase 
between  Figs  5a and 5b, in part, due to modifications of the Indonesian Throughflow. 

4. Conclusion 

A latitudinal delineation exists in the  nature of large-scale  global sea level variabil- 
ity  due to inhomogeneities in ocean  physics; Wind-driven baroclinic and barotropic 
changes dominate the tropics and high latitudes, respectively,  while seasonal heating 
and cooling  effects control sea level at mid-latitudes. Identification of such character- 
istics facilitate analyses of altimetric data and were taken advantage of in assimilating 
TOPEX/POSEIDON data  into an ocean circulation model. 

Creating a comprehensive description of the ocean  is  becoming  increasingly  rec- 
ognized as  an  important  and urgent task in understanding the  turbulent  nature of the 
ocean and  its role  in climate fluctuations. In particular, ocean data assimilation has 
received  much attention in  recent  years  as a means of synthesizing diverse observations 
into a physically consistent estimate of the oceanic state. While much of the focus in as- 
similation has concerned  methodologies, a more fundamental iqsue  is the identification 
of what exactly is being  solved. 

The present study  illustrates how the Kalman filter approach, together with an 
analysis of the forward model,  provides a quantitative framework to properly set up  the 
assimilation problem, and  to solve it consistently.  In particular, evaluation of model 
representation  error is  found to be critical, as it identifies the model range space and 
because it defines the assimilation problem  itself. The analysis demonstrates consis- 
tent and quantitative improvements of the model.  Such results assures the accuracy 
of the estimate,  and therefore provides a basis to  further  understanding of processes 
controlling changes in ocean circulation. 
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Figure 1: Model  (black)  and  T/P  (gray) sea level comparison; (A) 100'E, 55% (north of 
Wilkes Abyssal  Plain), (B) 95'W, 60% (Bellingshausen  Abyssal  Plain).  The T/P data 
denote  3-day averages within the  vicinity of the  respective points. The  model is sampled 
at 1 -day  intervals. 
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Figure 2: Comparisons of T/P assimilation  (gray) and model  simulation (dashed black) with 
in situ measurements (solid  black); (A) temperature (200 m, 8'N, 180'E; TAO), (6) zonal 
velocity (120m, O'N, 1 lO'W), (C) bottom pressure (3600m, 47*S,52'E). The  bars denote 
standard error estimates. 
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Figure 3: Comparisons of T/P assimilation  (gray)  and  model  simulation  (thick dashed black) 
with temperature  measurements (thin solid black)  at 2's 165'E; (A) 125 m, (8) 500 m. The 
bars  denote  standard  error  estimates. 
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Figure 4: Zonally  and  vertically  integrated  meridional  heat flux (PW); (A) Indian Ocean, (B) 
Pacific Ocean, (C) Atlantic Ocean. The time-mean of TIP  assimilation  (thick  black)  and model 
simulation  (thick  gray) are practically  identical.  The thin solid curves are mean  assimilation flux 
plus minus root-mean-square of 30-day  averaged  fluxes. 
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Figure 5: Examples of zonally  and  vertically  integrated  heat flux (PW) as  a function of time; 
(A) 6% in the Indian Ocean, (B) 2'N in the  Pacific,  and (C) 4's in the Atlantic.  The  figures 
show the T/P  assimilated  estimate  (black)  and  the difference of  simulation minus assimilation 
(gray). 
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Plate 1 : Nature of sea level  variability  simulated by an OGCM. Sea level  variability (root-mean- 
square; units cm)  due to wind and  thermal  forcing shown in (A) is separated into parts  associated 
with (B) surface  heatinglcooling, (C) wind-driven  baroclinic,  and (D) wind-driven  barotropic motion. 
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Plate 2: Error Calibration. (A) and (B) are  data  and 
model  simulation  error estimates, respectively, in 
terms of sea level  variance,  based on a data/simulation 
comparison. (C) is same as (B), but from the  Kalman 
filter  algorithm using scaled  wind-stress as model 
process  noise. 
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Plate 3: Model  improvement of simulating  observed T/P sea level  variability by assimilation. 
Values are reduction of root-mean-square sa level  residual; (A) Skill of filtered  forecast  relative 
to simulation, (B) expected  value of (A). Positive  (negative)  numbers  indicate  improvements 
over  (worsening from) simulation. 
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Plate 4: Differences between T/P assimilation  and model simulation  at 1200 m for a particular 
instant in October 1993. Colors  and  arrows  denote  temperature  and  velocity differences, 
respectively. 


